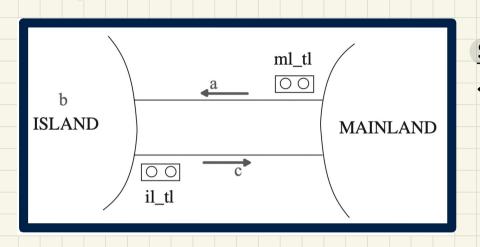
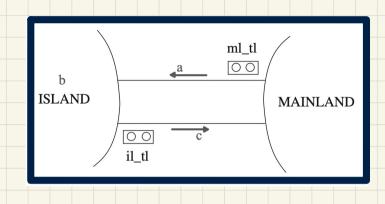
Bridge Controller: "Old" and "New" Events



Single Car Travel:
<init,
ml_tl_green, ML_out,
IL_in,
il_tl_green, IL_out, ML_in>

Bridge Controller: Guards of "old" Events 2nd Refinement



sets: COLOR

constants: red, green

axioms:

axm2_1 : COLOR = {green, red} axm2_2: green # red

variables: a, b, c

 $ml_{-}tl$

 $il_{-}tl$

invariants:

inv2_2: *il_tl* ∈ *COLOUR*

inv2_3: $ml_t = green \Rightarrow a + b < d \land c = 0$ $inv2_4$: $il_tl = areen \Rightarrow b > 0 \land a = 0$

inv2_1: ml_tl ∈ COLOUR

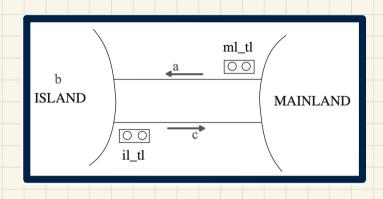
ML_out: A car exits mainland (getting onto the bridge).

ML out when then a := a + 1end

IL_out: A car exits island <u>(getting onto the **bridge**).</u>

> IL out when then b := b - 1c := c + 1end

Bridge Controller: Guards of "new" Events 2nd Refinement



sets: COLOR

constants: red, green

axioms:

axm2_1 : COLOR = {green, red}
axm2_2 : green ≠ red

variables:

a, b, c ml tl

 $il_{-}tl$

invariants:

inv2_1: *ml_tl* ∈ *COLOUR* **inv2_2**: *il_tl* ∈ *COLOUR*

inv2_3: $ml_t = green \Rightarrow a + b < d \land c = 0$

inv2_4: $il_t = green \Rightarrow b > 0 \land a = 0$

ML_tl_green:

turn the traffic light ml_tl to green

ML_tl_green
when
??
then
ml_tl := green
end

IL_tl_green:

turn the traffic light il_tl to green

IL_tl_green
when
??
then
il_tl := green
end

PO/VC Rule of Invariant Preservation: Sequents

II out

Abstract m1

variables: a, b, c

invariants:

 $inv1_1 : a \in \mathbb{N}$ $inv1_2 : b \in \mathbb{N}$

inv1_3 : $c \in \mathbb{N}$ inv1_4 : a + b + c = n

 $inv1_4: a+b+c=n$ $inv1_5: a=0 \lor c=0$

a+b < dc = 0then

ML out

when

end

ML out

when

a:= a+1

then
b:=b-1
c:=c+1
end

IL out

when

h > 0

a = 0

Concrete m2

variables: a, b, c ml_tl il_tl

invariants:

inv2_1: *ml_tl* ∈ *COLOUR* **inv2 2**: *il tl* ∈ *COLOUR*

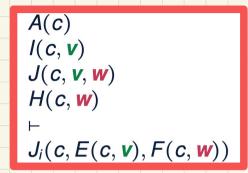
inv2_3: $ml_tl = green \Rightarrow a + b < d \land c = 0$ **inv2_4**: $il_tl = green \Rightarrow b > 0 \land a = 0$

then a := a + 1 end

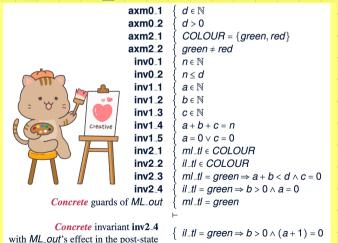
 $ml_{-}tl = green$

b := b - 1 c := c + 1**end**

Exercise: Specify IL_out/inv2_3/INV



ML_out/inv2_4/INV



Example Inference Rules

$$\frac{H,P,Q \vdash R}{H,P,P \Rightarrow Q \vdash R} \quad \mathbf{IMP_L}$$

$$\frac{H, P \vdash Q}{H \vdash P \Rightarrow Q} \quad \mathbf{IMP} \mathbf{R}$$

$$\frac{H, \neg Q \vdash P}{H, \neg P \vdash Q} \quad \textbf{NOT_L}$$

Discharging POs of m2: Invariant Preservation

First Attempt

AND L

$$d \in \mathbb{N}$$

$$d > 0$$

$$COLOUR = \{green, red\}$$

$$green \neq red$$

$$n \in \mathbb{N}$$

$$n \le d$$

$$a \in \mathbb{N}$$

$$b \in \mathbb{N}$$

$$c \in \mathbb{N}$$

$$a + b + c = n$$

$$a = 0 \lor c = 0$$

$$ml.tl \in COLOUR$$

$$ml.tl = green \Rightarrow a + b < d \land c = 0$$

$$il.tl = green \Rightarrow b > 0 \land a = 0$$

$$ml.tl = green$$

$$il.tl = green$$

$$il.tl = green \Rightarrow b > 0 \land (a + 1) = 0$$

ML_out/inv2_4/INV

$$\begin{array}{c|c}
H \vdash P & H \vdash Q \\
\hline
H \vdash P \land Q & \text{AND} \cdot \mathbf{R}
\end{array}$$

IMP L

 $\frac{H, P, Q \vdash R}{H, P, P \Rightarrow Q \vdash R}$

$$\frac{H,P \vdash Q}{H \vdash P \Rightarrow Q} \quad \mathsf{IMP_R}$$

MON

areen ≠ red $iI_{-}tI = green \Rightarrow b > 0 \land a = 0$ $ml_{-}tl = green$ IMP_R $iI_{-}tI = green$

 $b > 0 \land (a+1) = 0$

 $ml_{\perp}tl = green$ $iI_{-}tI = green$

areen + red b > 0 $b > 0 \land a = 0$ a = 0AND_L ml_tl = areen $il_{t} = areen$ $b > 0 \land (a+1) = 0$ $b > 0 \land (a+1) = 0$

green + red AND_R

 $iI_{-}tI = green$ b > 0green + red b > 0a = 0 $ml_tl = areen$ il_tl = green

(a+1)=0

areen + red b > 0a = 0

 $ml_{\perp}tl = areen | HYP$

areen ≠ red $mI_{t}I = green$ ARI $il_tl = areen$?? 1 = 0

green + red

 $ml_{\perp}tl = green$

 $iI_{-}tI = green$

(0+1)=0

EQ_LR.

MON

Discharging POs of m2: Invariant Preservation

First Attempt

IL_out/inv2_3/INV

$$\begin{array}{c|c} H \vdash P & H \vdash Q \\ \hline H \vdash P \land Q & \textbf{AND.R} & \hline \\ H, P, Q \vdash R \\ \hline H, P, P \Rightarrow Q \vdash R & \textbf{IMP_L} & \hline \\ H \vdash P \Rightarrow Q & \textbf{IMP_R} \\ \end{array}$$

MON

green
$$\neq$$
 red

ml.tl = green \Rightarrow a + b < d \land c = 0

il.tl = green

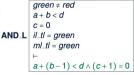
-

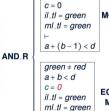
ml.tl = green \Rightarrow a + (b - 1) < d \land (c + 1) = 0

IMP_R

green
$$\neq$$
 red
ml.tl = green \Rightarrow a + b < d \land c = 0
il.tl = green
ml.tl = green
 \vdash
a + (b - 1) < d \land (c + 1) = 0

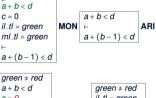
```
 \begin{aligned} & \text{IMP.L} \\ & \underset{l...tl}{\text{IMP.L}} & \underset{l...tl}{\text{green } \neq red} \\ & a+b < d \wedge c = 0 \\ & il..tl = green \\ & ml.tl = green \\ & \\ & + (b-1) < d \wedge (c+1) = 0 \end{aligned}
```

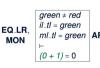




(c+1)=0

areen + red





1 = 0

SHOCKED

Fixed

Understanding the Failed Proof on INV

 $ml_{-}tl = green$

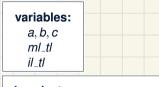
a := a + 1

MI out

when

then

end



invariants:

inv2 1: ml tl ∈ COLOUR inv2 2: *il tl ∈ COLOUR*

Study

inv2_3: $ml_t = qreen \Rightarrow a + b < d \land c = 0$

 $inv2_4$: $il_tl = areen \Rightarrow b > 0 \land a = 0$

IL out when

il_tl = areen then h = h - 1

c := c + 1

end

IL_out/inv2_3/INV

 $d \in \mathbb{N}$ d > 0COLOUR = {green, red} areen ≠ red $n \in \mathbb{N}$ n < d

a E N $b \in \mathbb{N}$

 $C \in \mathbb{N}$ a+b+c=n

il tl

 $a = 0 \lor c = 0$ ml tl ∈ COLOUR

il tl e COLOUR $mI_{-}tI = areen \Rightarrow a + b < d \land c = 0$

if $tl = areen \Rightarrow b > 0 \land a = 0$ $il\ tl = areen$

 $mI_{-}tI = green \Rightarrow a + (b-1) < d \land (c+1) = 0$

ml tl 00

MAINLAND

ML_out/inv2_4/INV

 $d \in \mathbb{N}$ d > 0

COLOUR = { green, red} areen ≠ red

 $n \in \mathbb{N}$ n < d

 $a \in \mathbb{N}$

 $b \in \mathbb{N}$ $C \in \mathbb{N}$

a+b+c=n

 $a = 0 \lor c = 0$

ml tl c COLOLIR

il tl ∈ COLOUR $ml_{-}tl = areen \Rightarrow a + b < d \land c = 0$ $iI_{-}tI = areen \Rightarrow b > 0 \land a = 0$

00

MAINLAND

ML_out

d = 2

a' = 1

b' = 0

c'=1

 $ml_tl = areen$

 $iI_{-}tI = qreen \Rightarrow b > 0 \land (a+1) = 0$

Unprovable Sequent:

green # red

init	,	ML_tl_gre
~		
d=2		d - 2

a' = 0

b' = 0

c' = 0

 $ml_{}tl' = red$

 $iI_{-}tI' = red$

u_green	,	IVIL_C
$\overline{}$		$\overline{}$
d = 2		d =

$$a' = 0$$
 $a' = 1$
 $b' = 0$ $b' = 0$
 $c' = 0$ $c' = 0$
ml_tl' = green $ml_-tl' = gr$

 $il_{l}tl' = red$

a' = 1

ISLAND.

a' = 0b' = 1

IL₋in

d = 2

 $il_{-}tl' = red$

b' = 1
$$c' = 0$$
 $c' = 0$ $ml_-tl' = green$ $ml_-tl' = green$

$$d = 2$$

 $a' = 0$
 $b' = 1$
 $c' = 0$

IL_tl_green

il_tl' = green

ISLAND

00

*IL*_out

d = 2

$$ml_tl' = green$$
 $ml_tl' = green$
 $il_tl' = green$ $il_tl' = green$

Fixing m2: Adding an Invariant

Abstract m1

variables: a, b, c

invariants:

inv1 1: $a \in \mathbb{N}$ inv1 2: $b \in \mathbb{N}$

 $inv1_4: a+b+c=n$

inv1 5: $a = 0 \lor c = 0$

inv1_3: $c \in \mathbb{N}$

then a := a + 1end

ML out

when

then

end

 $ml_{-}tl = green$

a := a + 1

ML out

when

a+b < d

c = 0

II out when h > 0a = 0

> then b := b - 1c := c + 1

end

IL out

when

then

end

 $il_tl = areen$

b := b - 1

c := c + 1

Concrete m2

variables:

a.b.c ml tl il tl

invariants:

inv2 1: ml tl ∈ COLOUR inv2 2: il tl ∈ COLOUR

inv2_3: $ml_t = qreen \Rightarrow a + b < d \land c = 0$

 $inv2_4$: $il_tl = areen \Rightarrow b > 0 \land a = 0$

Exercise: Specify IL_out/inv2_3/INV

RFQ3

The bridge is one-way or the other, not both at the same time.

inv2 5: ml tl = red \(\text{il} tl = red

ML out/inv2 4/INV

 $d \in \mathbb{N}$ axm0 1

axm0 2 d > 0

COLOUR = { green, red} axm2 1

axm2 2 areen ≠ red

inv0 1 $n \in \mathbb{N}$

inv0 2 n < d

 $a \in \mathbb{N}$ inv1 1

inv1_2 $b \in \mathbb{N}$

 $C \in \mathbb{N}$ inv1 3

a+b+c=n

inv1 4

inv1_5 $a = 0 \lor c = 0$

inv2 1 ml tl ∈ COLOUR

inv2 2 il tl ∈ COLOUR

inv2_3 $mI_{-}tI = qreen \Rightarrow a + b < d \land c = 0$

inv2_4 $iI_{-}tI = green \Rightarrow b > 0 \land a = 0$

inv2 5 $ml_{t}l = red \lor il_{t}l = red$

Concrete guards of ML_out $ml_{\perp}tl = green$

Concrete invariant inv2_4

 $iI_{-}tI = green \Rightarrow b > 0 \land (a+1) = 0$ with ML_out's effect in the post-state

